Lower bounds and the asymptotic behaviour of positive operator semigroups
نویسندگان
چکیده
منابع مشابه
On the Asymptotic Behaviour of Perturbed Semigroups
We give conditions on a strongly continuous semigroup T and a bounded perturbation B such that the perturbed semigroup S preserves asymptotic properties as boundedness, asymptotic almost periodicity, uniform ergodicity and total uniform ergodicity. In the rst systematic treatise on perturbation of semigroups, R.S.Phillips 10] proved in 1953 that, if A is the innnitesimal generator of a strongly...
متن کاملcompactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملComputing the asymptotic worst-case of bin packing lower bounds
This paper addresses the issue of computing the asymptotic worst-case of lower bounds for the Bin Packing Problem. We introduce a general result that allows to bound the asymptotic worst-case performance of any lower bound for the problem and to derive for the first time the asymptotic worst-case of the well-known bound L3 by Martello and Toth. We also show that the general result allows to eas...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2017
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2017.9